TLR and TNF-R1 activation of the MKK3/MKK6–p38α axis in macrophages is mediated by TPL-2 kinase

نویسندگان

  • Michael J. Pattison
  • Olivia Mitchell
  • Helen R. Flynn
  • Chao-Sheng Chen
  • Huei-Ting Yang
  • Hakem Ben-Addi
  • Stefan Boeing
  • Ambrosius P. Snijders
  • Steven C. Ley
چکیده

Previous studies suggested that Toll-like receptor (TLR) stimulation of the p38α MAP kinase (MAPK) is mediated by transforming growth factor-β-activated kinase 1 (TAK1) activation of MAPK kinases, MKK3, MKK4 and MKK6. We used quantitative mass spectrometry to monitor tumour progression locus 2 (TPL-2)-dependent protein phosphorylation following TLR4 stimulation with lipopolysaccharide, comparing macrophages from wild-type mice and Map3k8(D270A/D270A) mice expressing catalytically inactive TPL-2 (MAP3K8). In addition to the established TPL-2 substrates MKK1/2, TPL-2 kinase activity was required to phosphorylate the activation loops of MKK3/6, but not of MKK4. MKK3/6 activation required IκB kinase (IKK) phosphorylation of the TPL-2 binding partner nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB1) p105, similar to MKK1/2 activation. Tumour necrosis factor (TNF) stimulation of MKK3/6 phosphorylation was similarly dependent on TPL-2 catalytic activity and IKK phosphorylation of NF-κB1 p105. Owing to redundancy of MKK3/6 with MKK4, Map3k8(D270A) mutation only fractionally decreased lipopolysaccharide activation of p38α. TNF activation of p38α, which is mediated predominantly via MKK3/6, was substantially reduced. TPL-2 catalytic activity was also required for MKK3/6 and p38α activation following macrophage stimulation with Mycobacterium tuberculosis and Listeria monocytogenes Our experiments demonstrate that the IKK/NF-κB1 p105/TPL-2 signalling pathway, downstream of TAK1, regulates MKK3/6 and p38α activation in macrophages in inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antileishmanial effect of 18β-glycyrrhetinic acid is mediated by Toll-like receptor-dependent canonical and noncanonical p38 activation.

18β-Glycyrrhetinic acid (GRA), a natural immunomodulator, greatly reduced the parasite load in experimental visceral leishmaniasis through nitric oxide (NO) upregulation, proinflammatory cytokine expression, and NF-κB activation. For the GRA-mediated effect, the primary kinase responsible was found to be p38, and analysis of phosphorylation kinetics as well as studies with dominant-negative (DN...

متن کامل

TAB1-Induced Autoactivation of p38α Mitogen-Activated Protein Kinase Is Crucially Dependent on Threonine 185

p38α mitogen-activated protein kinase is essential to cellular homeostasis. Two principal mechanisms to activate p38α exist. The first relies on dedicated dual-specificity kinases such as mitogen-activated protein kinase kinase (MAP2K) 3 (MKK3) or 6 (MKK6), which activate p38α by phosphorylating Thr180 and Tyr182 within the activation segment. The second is by autophosphorylation of Thr180 and ...

متن کامل

Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1.

Interleukin-1 (IL-1) activates p38 MAP kinase via the small G protein Ras, and this activity can be down-regulated by another small G protein Rap. Here we have further investigated the role of Ras and Rap in p38 MAPK activation by IL-1. Transient transfection of cells with constitutively active forms of the known IL-1 signaling components MyD88, IRAK, and TRAF-6, or the upstream kinases MKK6 an...

متن کامل

Differential Roles of MAPK Kinases MKK3 and MKK6 in Osteoclastogenesis and Bone Loss

Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38α is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogene...

متن کامل

Mitogen-activated protein kinase kinase 3 is a pivotal pathway regulating p38 activation in inflammatory arthritis.

p38 mitogen-activated protein kinase (MAPK) regulates cytokines in arthritis and is, in turn, regulated by MAPK kinase (MKK) 3 and MKK6. To modulate p38 function but potentially minimize toxicity, we evaluated the utility of targeting MKK3 by using MKK3(-/-) mice. These studies showed that TNF-alpha increased phosphorylation of p38 in WT cultured synoviocytes but that p38 activation, IL-1beta, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 473  شماره 

صفحات  -

تاریخ انتشار 2016